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1 Introduction

With the rapid development of communication technology, networked systems have emerged in var-

ious fields, such as smart grid [1, 2], wireless sensor networks [3, 4], multi-UAV systems (unmanned

aerial vehicles) [5, 6]. In networked systems, terminal devices, i.e. nodes, are equipped with ba-

sic computing and communication capabilities and connected through a communication network.

Nowadays, many researchers focus on studying peer-to-peer communication and cooperation meth-

ods for nodes to solve systematic optimization problems, such as electric demand response [7, 8],

autonomous target tracking [9, 10], etc. It has the potential to achieve better efficiency, robustness,

scalability, and privacy protection than traditional centralized optimization.

Consensus-based distributed optimization (CDO) is a common problem definition for optimiza-

tion problems in networked systems [11]. In CDO, there is a local objective function for each node,

and the systematic objective function, i.e. global objective function, is the sum of all local objec-

tive functions. CDO aims to minimize the global objective function and make the nodes reach a

consensus on the final solution. There are two major features of CDO, limited local information

and no-center local communication. First, each node can only access its own local objective func-

tion. This is because the local objective function is usually related to the privacy data, real-time

data, or mass data stored in terminal devices, which cannot be transmitted to other nodes. What’s

more, the local objective functions of different nodes are usually conflicting to some extent. Second,

the communication network of CDO is usually a not-fully-connected graph without a center node.

Nodes can only communicate with immediate neighbors in the graph. This feature increases the

difficulty of fast information transfer among nodes.

In the literature on consensus-based distributed optimization, lots of first-order algorithms

have been proposed based on consensus theory and gradient descent method [12, 13]. For example,

Nedic and Ozdaglar proposed a distributed subgradient descent method [13]. In addition, zero-

order algorithms also attract attention from researchers. Two representative classes are randomized
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gradient-free algorithms (RGFs) and distributed evolutionary algorithms. RGFs replace the gradi-

ent computation of gradient-based algorithms by the differential gradient estimation [14, 15, 16].

Distributed evolutionary algorithms usually create a subpopulation in each agent and evolve sub-

populations to optimize the global objective cooperatively [7, 17, 18, 19].

Based on existing literature, black-box CDO still remains promising and challenging. To this

end, we design a set of benchmark functions for black-box consensus-based distributed optimization.

This benchmark set considers the communication environments, conflict degrees, and node homo-

geneity. Besides, we provide an algorithm implementation framework, which provides peer-to-peer

communication interfaces and performance evaluation for competitors. The benchmark functions

and algorithm framework are open-source in the following link:

https://github.com/iamrice/Benchmark-for-black-box-distributed-consensus-

optimization

In the following, Section 2 introduces the detailed definition of benchmark functions. Section

3 elaborates elementary functions. Finally, the competition protocol is introduced in Section 4.

2 Benchmark functions of consensus-based distributed opti-

mization problems

The problem definition of consensus-based distributed optimization consists of two parts, i.e., ob-

jective function and communication network.

2.1 Objective function

For a networked system with n nodes, consensus-based distributed optimization is to minimize the

global (systematic) objective function F :

minF (x) =
1

n

n∑
i=1

fi(x)

where fi(x) = f i
elementary(x) + σ

D∑
j=1

[A]ijxj , i = 1, 2, ..., n

n∑
i=1

[A]ij = 0, j = 1, 2, ..., D

(1)

Here, fi is the local objective function of the i-th node, consisting of an elementary function

and a linear term. A ∈ Rn×D is a matrix consisting of n weight vectors for linear terms, and

σ ∈ R is the conflict degree. Because the sum of each row in A is 0, the linear items of local

objective functions cancel each other out. As a result, the global objective function is reduced to

F (x) = 1
n

∑n
i=1 fi(x) =

1
n

∑n
i=1 f

i
elementary.

We provide four types of elementary functions, including rotated Elliptic, rotated Rosenbrock,

rotated Schewefel, rotated Griewank. They are introduced in Sec. 2.4 in detail.
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2.2 Communication network

In consensus-based distributed optimization, each node can only communicate with its immediate

neighbors. Communication networks affect the problem difficulty and consensus rate. We design

four types of communication networks, i.e., 20-nodes ring network, 40-nodes random network, 81-

nodes grid network, and a hidden network during competition. They are shown in Fig. 1.
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(a) 20-nodes ring network
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(b) 40-nodes random network
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(c) 81-nodes grid network

Figure 1: Four types of communication networks

2.3 Function settings

Based on the above problem definitions, we design 36 functions from four aspects, i.e., elementary

function, conflict degree, communication network, and homogeneity. The settings of G1, G2, G3,

G4 are public, while G5 is hidden for test functions. The configuration of benchmark functions is

shown in Table 1.

Note that, in heterogeneous functions, the selection of elementary function is configured based

on the index of nodes. For example, in the heterogeneous problem ”F33” consisted of elliptic and
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Table 1: detailed setting of benchmark functions

Group Index Elementary functions Conflict degree Communication network Homogeneity

G1

F1 Elliptic

10

20-nodes ring network

Homogeneous

F2 Rosenbrock

F3 Schewefel

F4 Griewank

F5 Elliptic

100
F6 Rosenbrock

F7 Schewefel

F8 Griewank

G2

F9 Elliptic

10

40-nodes random network

F10 Rosenbrock

F11 Schewefel

F12 Griewank

F13 Elliptic

100
F14 Rosenbrock

F15 Schewefel

F16 Griewank

G3

F17 Elliptic

10

81-nodes grid network

F18 Rosenbrock

F19 Schewefel

F20 Griewank

F21 Elliptic

100
F22 Rosenbrock

F23 Schewefel

F24 Griewank

G4

F25 Elliptic + rosenbrock

10 40-nodes random network Heterogeneous
F26 Elliptic + schwefel

F27 Rosenbrock + Schwefel

F28 Rosenbrock + griewank

G5

F29

F30

F31

F32

F33 (hidden for test functions)

F34

F35

F36

rosenbrock, the elementary function of the i-th node is defined as follows:

f i
elementary =

frotated elliptic i is odd

frotated rosenbrock i is even
(2)
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2.4 Elementary functions

2.4.1 Symbols

- D: problem dimension

- xopt: optimal solution

- R: an orthogonal matrix to make all the variables in the objective function interdependent on

each other, ensuring the local objective function is non-separable

- Tasy: a transformation function to break the symmetry of the symmetric functions.

- Tosz: a transformation function to create smooth local irregularities.

2.4.2 Rotated Elliptic

f(x) =

D∑
i=1

106
i−1
D−1 z2i

where z = Tosz(Ry)

y = x− xopt

x ∈ [−100, 100]D

(3)

Properties:

- Unseparable

- Shifted

- Smooth local irregularities

2.4.3 Rotated Schwefel

f(x) =

D∑
i=1

(

i∑
j=1

zi)
2

where z = T 0.2
asy(Tosz(Ry))

y = x− xopt

x ∈ [−100, 100]D

(4)
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Properties:

- Unseparable

- Shifted

- Smooth local irregularities

- asymmetric

2.4.4 Rotated Rosenbrock

f(x) =

D−1∑
i=1

100(z2i − zi+1)
2 + (zi − 1)2

where z = Ry

y = x− xopt

x ∈ [−100, 100]D

(5)

Properties:

- Unseparable

- Shifted

- Multimodal

2.4.5 Rotated Griewank

f(x) =

D∑
i=1

x2
i

4000
−

D∏
i=1

cos(
xi√
i
) + 1

where z = Ry

y = x− xopt

x ∈ [−100, 100]D

(6)

Properties:

- Unseparable

- Shifted

- Multimodal

3 Competition framework and evaluation procedures

3.1 Implementation framework of distributed algorithms

There are two principles of the algorithm implementation. First, each node can only access its own

local objective function fi. Second, each node can only communicate with its immediate neighbors
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in the system. The participants need to develop the algorithm in the node-level. This algorithm is

applied in all nodes equally.

MPI_Send MPI_Recv

MPI_Isend MPI_Irecv

MPI_Gather ……

Problem-specific communication topology

Multi-agent communication framework

Neighbor_Send Neighbor_IrecvNeighbor_IsendNeighbor_Recv

User to-do: Algorithm implementation for each agent

MPI: Message Processing Interface

Create multiprocess Distributed execution Performance metric

Models

Framework 

Algorithm

Execution

Figure 2: Algorithm framework of the competition

We provide the following interfaces of the framework:

• Interfaces for communication: includes blocking communication and non-blocking communi-

cation. We define the range of communication for each node according to the communication

network.

• Interface for fitness evaluation: returns fitness of local objective function. Each agent can only

call the objective function of itself.

• Interface for performance evaluation: returns the algorithm performance, including fitness,

system disagreement, and communication cost.

3.2 Evaluation procedures

When the maximum evaluation number is reached, the framework will collect the final solutions

{x1, x2, ..., xn} and communication cost {c1, c2, ..., cn} of the n nodes. Then, three evaluation crite-

rions are computed as follows.

• Fitness of average final solutions F : F ( 1n
∑n

i=1 xi), where F is the global objective function.

• System disagreement:
∑n

i=1 ∥xi − x∥ where x = 1
n

∑n
i=1 xi.

• Communication cost C:
∑n

i=1 ci .
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In this competition, it is necessary for all nodes to reach a consensus finally. Therefore, a

final solution is valid only when the system disagreement is lower than a threshold ϵ = 1e − 3.

For valid solutions, we use Z-Score normalization to transform the fitness and the communication

cost independently, and add them together as the final score. Suppose there are m competitors

with fitness {F1,F2, ...,Fm} and communication cost {C1, C2, ..., Cm} after optimizing a benchmark

function, the final score of the k-th competitor on this benchmark function is defined as:

Fk − µ(F1,F2,...,Fm)

σ(F1,F2,...,Fm)
+

Ck − µ(C1,C2,...,Cm)

σ(C1,C2,...,Cm)

The cumulative sum of scores of all tested functions will be used for ranking the contestants.

3.3 Example of representing the results

Table 2: results record

Group Index
Disagreement <1e-3

Group Index
Disagreement <1e-3

Fitness Communication cost Fitness Communication cost

G1

F1

G3

F17

F2 F18

F3 F19

F4 F20

F5 F21

F6 F22

F7 F23

F8 F24

G2

F9

G4

F25

F10 F26

F11 F27

F12 F28

F13 F29

F14 F30

F15 F31

F16 F32

G5

F33

F34

F35

F36
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